Skip to main content
Physics LibreTexts

8.8: Harmonic Perturbations

  • Page ID
    1233
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider a perturbation that oscillates sinusoidally in time. This is usually called a harmonic perturbation. Thus,

    \( H_1(t) = V\,\exp(\,{\rm i}\,\omega \,t) + V^\dagger \,\exp(-{\rm i}\,\omega\, t),\) \ref{850}

    where \( V\) is, in general, a function of position, momentum, and spin operators.

    Let us initiate the system in the eigenstate \( \vert i\rangle\) of the unperturbed Hamiltonian, \( H_0\) , and switch on the harmonic perturbation at \( t=0\) . It follows from Equation \ref{796} that

    \( c_n^{\ref{1}}\) $ = \frac{-{\rm i}}{\hbar} \int_0^t dt'\left[V_{ni} \,\exp({\rm i}\...
...^\dagger\, \exp(-{\rm i}\,\omega\, t')\right]\exp(\,{\rm i}\, \omega_{ni}\, t')$ $ = \frac{1}{\hbar} \left(\frac{1-\exp[\,{\rm i}\,(\omega_{ni} + \o...
...,(\omega_{ni}-\omega )\,t]} {\omega_{ni} - \omega} \,V_{ni}^{\,\dagger}\right),$ \ref{851}

    where

    \( V_{ni}\) \( = \langle n\vert\,V\,\vert i\rangle,\) \ref{852} \( V_{ni}^\dagger\) \( = \langle n \vert\,V^\dagger\, \vert i\rangle = \langle i\vert\,V\,\vert n\rangle^\ast.\) \ref{853}

    This formula is analogous to Equation \ref{803}, provided that

    \( \omega_{ni} = \frac{E_n-E_i}{\hbar} \rightarrow \omega_{ni}\pm \omega.\) \ref{854}

    Thus, it follows from the analysis of Section 8.6 that the transition probability \( P_{i\rightarrow n}(t)=\vert c_n^{\ref{1}}\vert^{\,2}\) is only appreciable in the limit \( t\rightarrow \infty\) if

    \( \omega_{ni} + \omega \simeq 0\) \( ~~~{\rm or}~~~ E_n \simeq E_i - \hbar\, \omega,\) \ref{855} \( \omega_{ni} - \omega \simeq 0\) \( ~~~{\rm or}~~~ E_n \simeq E_i + \hbar\, \omega.\) \ref{856}

    Clearly, \ref{855} corresponds to the first term on the right-hand side of Equation \ref{851}, and \ref{856} corresponds to the second term. The former term describes a process by which the system gives up energy \( \hbar\,\omega\) to the perturbing field, while making a transition to a final state whose energy level is less than that of the initial state by \( \hbar\,\omega\) . This process is known as stimulated emission. The latter term describes a process by which the system gains energy \( \hbar\,\omega\) from the perturbing field, while making a transition to a final state whose energy level exceeds that of the initial state by \( \hbar\,\omega\) . This process is known as absorption. In both cases, the total energy (i.e., that of the system plus the perturbing field) is conserved.

    By analogy with Equation \ref{816},

    \( w_{i\rightarrow [n]}\) \( =\left. \frac{2\pi}{\hbar} \,\overline{\vert V_{ni}\vert^{\,2}}\,\rho(E_n) \right\vert _{E_n = E_i-\hbar\,\omega},\) \ref{857} \( w_{i\rightarrow [n]}\) \( =\left. \frac{2\pi}{\hbar} \,\overline{ \vert V_{ni}^\dagger\vert^{\,2}}\,\rho(E_n)\right\vert _{E_n = E_i+\hbar\,\omega}.\) \ref{858}

    Equation \ref{857} specifies the transition rate for stimulated emission, whereas Equation \ref{858} gives the transition rate for absorption. These equations are more usually written

    \( w_{i\rightarrow n}\) \( = \frac{2\pi}{\hbar} \,\vert V_{ni}\vert^{\,2} \, \delta(E_n-E_i+\hbar\,\omega),\) \ref{859} \( w_{i\rightarrow n}\) \( = \frac{2\pi}{\hbar} \, \vert V_{ni}^\dagger\vert^{\,2}\,\delta(E_n -E_i-\hbar\,\omega).\) \ref{860}

    It is clear from Equations \ref{852}-\ref{853} that \( \vert V_{in}^\dagger\vert^{\,2} = \vert V_{ni}\vert^{\,2}\) . It follows from Equations \ref{857}-\ref{858} that

    \( \frac{w_{i\rightarrow [n]}}{\rho(E_n)} = \frac{w_{n\rightarrow [i]}}{\rho(E_i)}.\) \ref{861}

    In other words, the rate of stimulated emission, divided by the density of final states for stimulated emission, equals the rate of absorption, divided by the density of final states for absorption. This result, which expresses a fundamental symmetry between absorption and stimulated emission, is known as detailed balancing, and is very important in statistical mechanics.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 8.8: Harmonic Perturbations is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?