Skip to main content
Physics LibreTexts

9.4: Partial Waves

  • Page ID
    1241
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We can assume, without loss of generality, that the incident wavefunction is characterized by a wavevector \( {\bf k}\) that is aligned parallel to the \( {\bf k}'\) that has the same magnitude as \( {\bf k}\) , but, in general, points in a different direction. The direction of \( {\bf k}'\) is specified by the polar angle \( \varphi\) about the \( V({\bf x}) = V(r)\) ] the scattering amplitude is a function of \( f(\theta, \varphi) = f(\theta).\) \ref{955}

    It follows that neither the incident wavefunction,

    \( \psi({\bf x}) = \frac{1}{(2\pi)^{3/2}} \left[ \exp(\,{\rm i}\,k\,r\cos\theta) + \frac{\exp(\,{\rm i}\,k\,r)\, f(\theta)} {r} \right],\) \ref{957}

    depend on the azimuthal angle \( \phi({\bf x})\) and \( (\nabla^2 + k^2)\,\psi = 0.\) \ref{958}

    Consider the most general solution to this equation in spherical polar coordinates that does not depend on the azimuthal angle \( \psi(r,\theta) = \sum_{l=0,\infty} R_l(r)\, P_l(\cos\theta),\) \ref{959}

    since the Legendre polynomials \( \theta\) -space. The Legendre polynomials are related to the spherical harmonics introduced in Chapter 4 via

    \( r^2\frac{d^2 R_l}{dr^2} + 2\,r \frac{dR_l}{dr} + [k^2 \,r^2 - l\,(l+1)]\,R_l = 0.\) \ref{961}

    The two independent solutions to this equation are the spherical Bessel function, \( \eta_l(k\,r)\) , where

    \( = y^l\left(-\frac{1}{y}\frac{d}{dy}\right)^l \frac{\sin y}{y},\) \ref{962} \( = -y^l\left(-\frac{1}{y}\frac{d}{dy}\right)^l \frac{\cos y}{y}.\) \ref{963}

    Note that spherical Bessel functions are well-behaved in the limit \( y\rightarrow \infty\) is

    \( \rightarrow \frac{\sin(y - l\,\pi/2)}{y},\) \ref{964} \( \rightarrow - \frac{\cos(y-l\,\pi/2)}{y}.\) \ref{965}

    We can write

    \( a_l\)
    are constants. Note there are no Neumann functions in this expansion, because they are not well-behaved as \( \int_{-1}^1 d\mu\,P_n(\mu) \,P_m(\mu) = \frac{\delta_{n\,m}}{n+1/2},\) \ref{967}

    so we can invert the above expansion to give

    \( j_l(y) = \frac{(-{\rm i})^l}{2} \int_{-1}^1 d\mu\, \exp(\,{\rm i}\, y\,\mu) \,P_l(\mu),\) \ref{969}

    where \( a_l = {\rm i}^l \,(2\,l+1),\) \ref{970}

    giving

    \( \psi({\bf x}) = \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty}\left[ A_l\,j_l(k\,r) + B_l\,\eta_l(k\,r)\right] P_l(\cos\theta),\) \ref{972}

    where the \( B_l\) are constants. Note that the Neumann functions are allowed to appear in this expansion, because its region of validity does not include the origin. In the large-\( r\) limit, the total wavefunction reduces to

    $ \psi ({\bf x} ) \simeq \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty}\l...
...\pi/2)}{k\,r} - B_l\,\frac{\cos(k\,r -l\,\pi/2)}{k\,r} \right] P_l(\cos\theta),$ \ref{973}

    where use has been made of Equations \ref{964}-\ref{965}. The above expression can also be written

    \( \delta_l\)
    .

    Equation \ref{974} yields

    $ \psi({\bf x}) \simeq \frac{1}{(2\pi)^{3/2}} \sum_l C_l\, \frac{\e...
...p[-{\rm i}\,(k\,r - l\,\pi/2+ \delta_l)] }{2\,{\rm i}\,k\,r}\, P_l(\cos\theta),$ \ref{975}

    which contains both incoming and outgoing spherical waves. What is the source of the incoming waves? Obviously, they must be part of the large-\( r\) asymptotic expansion of the incident wavefunction. In fact, it is easily seen that

    $ \phi({\bf x}) \simeq \frac{1}{(2\pi)^{3/2}} \sum_{l=0,\infty} {\r...
...i/2)] -\exp[-{\rm i}\,(k\,r - l\,\pi/2)]}{2\,{\rm i}\,k\,r} \, P_l(\cos\theta),$ \ref{976}

    in the large-\( r\) limit. Now, Equations \ref{956} and \ref{957} give

    \( r\)
    expansions of \( \phi({\bf x})\) must be equal. It follows from Equations \ref{975} and \ref{976} that

    \( f(\theta) = \sum_{l=0,\infty} (2\,l+1)\,\frac{\exp(\,{\rm i}\,\delta_l)} {k} \,\sin\delta_l\,P_l(\cos\theta).\) \ref{979}

    Clearly, determining the scattering amplitude \( \delta_l\) .

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)


    This page titled 9.4: Partial Waves is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?