Skip to main content
Physics LibreTexts

9.8: Low Energy Scattering

  • Page ID
    1245
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    At low energies (i.e., when \( l>0\) , in general, make a negligible contribution to the scattering cross-section. It follows that, at these energies, with a finite range potential, only \( V=V_0\) for \( V=0\) for \( V_0\) is a constant. The potential is repulsive for \( V_0<0\) . The external wavefunction is given by [see Equation \ref{986}]

    $ A_0(r) = \exp(\,{\rm i}\, \delta_0)\,\left[ j_0(k\,r) \cos\delta_...
...elta_0\right] = \frac{ \exp(\,{\rm i} \,\delta_0)\, \sin(k\,r+\delta_0)}{k\,r},$ \ref{1008}

    where use has been made of Equations \ref{962}-\ref{963}. The internal wavefunction follows from Equation \ref{991}. We obtain

    \( B\) is a constant, and \( E>V_0\). For \( A_0(r) = B \,\frac{\sinh(\kappa\, r)}{r},\) \ref{1011}

    where

    \( A_0(r)\), and its radial derivative at \( \tan(k\,a+\delta_0) = \frac{k}{k'} \,\tan (k'\,a)\) \ref{1013}

    for \( \tan(k\,a+ \delta_0) = \frac{k}{\kappa} \,\tanh (\kappa\, a)\)

    \ref{1014}

    for \( E>V_0\) . Suppose that \( k' \gg k\) . It follows from Equation \ref{1013} that, unless \( k\,a + \delta_0 \simeq \frac{k}{k'}\,\tan (k'\,a).\) \ref{1015}

    This yields

    \( \sigma_{\rm total} \simeq \frac{4\pi}{k^2} \sin^2\delta_0 =4\pi \,a^2\left[\frac{\tan (k'\,a)}{(k'\,a)} -1\right]^{\,2}.\) \ref{1017}

    Now,

    \( k\,a\)
    ,

    \( s\) -wave) scattering cross-section is independent of the energy of the incident particles (provided that this energy is sufficiently small).

    Note that there are values of \( k'a\simeq 4.49\) ) at which \( l>0\) partial waves. But, at low incident energies, these contributions are small. It follows that there are certain values of \( k\) that give rise to almost perfect transmission of the incident wave. This is called the Ramsauer-Townsend effect, and has been observed experimentally.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 9.8: Low Energy Scattering is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?