Skip to main content
Physics LibreTexts

19.1: Mass Suspended by Two Ropes

  • Page ID
    92206
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    As a typical example of a problem in statics, consider the situation shown in Fig. \(\PageIndex{1}\)(a). A block of mass \(m\) is suspended by a wire, and the upper end of the wire is attached to two more ropes or wires that connect to the ceiling. Each of the three ropes is under tension; the tensions are labeled \(T_{1}, T_{2}\), and \(T_{3}\).

    To begin the analysis of this situation, it is often helpful to draw a free-body diagram for each body in the problem. A free-body diagram shows all the forces acting on the body, and helps clarify your thinking when doing the analysis. For this problem, there are two bodies present: the block and the knot. Fig. \(\PageIndex{1}\)(b) is a free-body diagram for the block, and Fig. \(\PageIndex{1}\)(c) is a free-body diagram for the knot.

    clipboard_e29a3fcc849ee5aeb1ee950ba63f36e1a.png
    Figure \(\PageIndex{1}\): A block suspended from the ceiling by ropes. (a) Diagram of the situation. The block of mass \(m\) is suspended by a rope; the upper end of the rope is attached to two other ropes that are attached to the ceiling. (b) Free-body diagram for the block. (c) Free-body diagram for the knot.

    Now let's begin the analysis; our goal will be to determine the three tensions \(T_{1}, T_{2}\), and \(T_{3}\), given the mass \(m\) and two angles \(\theta_{1}\) and \(\theta_{2}\). First, let's look at the free-body diagram for the block (Fig. \(\PageIndex{1}\)(b)). For the block, the tension and weight vectors are given by

    \[
    \begin{align}
    & \mathbf{T}_{3}=T_{3} \mathbf{j} \\[8pt]
    & \mathbf{W}=-m g \mathbf{j}
    \end{align}
    \]

    (Note the \(x\) and \(y\) directions indicated in Fig. \(\PageIndex{1}\)(a).) Now let's apply Newton's second law in both the \(x\) and \(y\) directions, noting that \(F=m a=0\) in this case:

    \[
    \begin{align}
    x: \quad \sum F_{x}=m a_{x} & \Rightarrow & 0=0 \\[8pt]
    y: \quad \sum F_{y}=m a_{y} & \Rightarrow & T_{3}-m g=0
    \end{align}
    \]

    Both right-hand sides are zero because the acceleration of the block is zero. The \(x\) equation (Eq. \(\PageIndex{3}\)) yields a tautology \(0=0\), which gives us no information. The \(y\) equation (Eq. \(\PageIndex{4}\)) tells us \(T_{3}=m g\), so we've just found tension \(T_{3}\).

    We can find the other two tensions ( \(T_{1}\) and \(T_{2}\) ) by analyzing the other body: the knot (Fig. \(\PageIndex{1}\)(c)). For the knot, the three tension vectors are given by

    \[
    \begin{align}
    & \mathbf{T}_{1}=-T_{1} \cos \theta_{1} \mathbf{i}+T_{1} \sin \theta_{1} \mathbf{j} \\[8pt]
    & \mathbf{T}_{2}=T_{2} \cos \theta_{2} \mathbf{i}+T_{2} \sin \theta_{2} \mathbf{j} \\[8pt]
    & \mathbf{T}_{3}=-T_{3} \mathbf{j}
    \end{align}
    \]

    Now let's apply Newton's second law ( \(F=m a=0\) ) individually to the \(x\) and \(y\) components:

    \[
    \begin{align}
    x: \quad \sum F_{x}=m a_{x} & \Rightarrow & -T_{1} \cos \theta_{1}+T_{2} \cos \theta_{2}=0 \\[8pt]
    y: \quad \sum F_{y}=m a_{y} & \Rightarrow & T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}-T_{3}=0
    \end{align}
    \]

    Again both right-hand sides are zero because the knot is not accelerating. Since \(T_{3}\) is already known, this gives two simultaneous equations in the two unknown tensions \(T_{1}\) and \(T_{2}\). One method for solving this system of equations is to write the equations in matrix form:

    \[
    \left(\begin{array}{cc}
    -\cos \theta_{1} \cos \theta_{2} \\[8pt]
    \sin \theta_{1} \sin \theta_{2}
    \end{array}\right)\left(\begin{array}{c}
    T_{1} \\[8pt]
    T_{2}
    \end{array}\right)=\left(\begin{array}{c}
    0 \\[8pt]
    T_{3}
    \end{array}\right)
    \]

    Now multiplying both sides on the left by the inverse of the \(2 \times 2\) matrix, we have

    \[
    \left(\begin{array}{c}
    T_{1} \\[8pt]
    T_{2}
    \end{array}\right)=\left(\begin{array}{cc}
    -\cos \theta_{1} \cos \theta_{2} \\[8pt]
    \sin \theta_{1} \sin \theta_{2}
    \end{array}\right)^{-1}\left(\begin{array}{c}
    0 \\[8pt]
    T_{3}
    \end{array}\right)
    \]

    Since the tension \(T_{3}\) and the angles \(\theta_{1}\) and \(\theta_{2}\) are all known, this gives the two unknown tensions \(T_{1}\) and \(T_{2}\).

    We can further simplify this by computing the matrix inverse explicitly. The determinant of the \(2 \times 2\) matrix is (Appendix 63.17)

    \[\begin{align}
    \operatorname{det}\left(\begin{array}{cc}
    -\cos \theta_{1} \cos \theta_{2} \\[8pt]
    \sin \theta_{1} \sin \theta_{2}
    \end{array}\right) =-\cos \theta_{1} \sin \theta_{2}-\sin \theta_{1} \cos \theta_{2} \end{align} \]

    \[ =-\sin \left(\theta_{1}+\theta_{2}\right)\]

    and the matrix of cofactors is

    \[
    \operatorname{cof}\left(\begin{array}{cc}
    -\cos \theta_{1} \cos \theta_{2} \\[8pt]
    \sin \theta_{1} \sin \theta_{2}
    \end{array}\right)=\left(\begin{array}{cc}
    \sin \theta_{2} -\sin \theta_{1} \\[8pt]
    -\cos \theta_{2} -\cos \theta_{1}
    \end{array}\right)
    \]

    Hence the matrix inverse, which is the transposed matrix of cofactors divided by the determinant, is

    \[
    \begin{align}
    \left(\begin{array}{cc}
    -\cos \theta_{1} \cos \theta_{2} \\[14pt]
    \sin \theta_{1} \sin \theta_{2}
    \end{array}\right)^{-1} =-\frac{1}{\sin \left(\theta_{1}+\theta_{2}\right)}\left(\begin{array}{cc}
    \sin \theta_{2} -\cos \theta_{2} \\[14pt]
    -\sin \theta_{1} -\cos \theta_{1}
    \end{array}\right) \end{align} \]

    \[=\frac{1}{\sin \left(\theta_1+\theta_2\right)}\left(\begin{array}{cc}
    -\sin \theta_2 & \cos \theta_2 \\[14pt]
    \sin \theta_1 & \cos \theta_1
    \end{array}\right) .
    \]

    The tensions \(T_1\) and \(T_2\) are therefore

    \[
    \begin{align}
    \left(\begin{array}{l}
    T_{1} \\
    T_{2}
    \end{array}\right) & =\frac{1}{\sin \left(\theta_{1}+\theta_{2}\right)}\left(\begin{array}{cc}
    -\sin \theta_{2} & \cos \theta_{2} \\[14pt]
    \sin \theta_{1} & \cos \theta_{1}
    \end{array}\right)\left(\begin{array}{c}
    0 \\
    T_{3}
    \end{array}\right) \\
    & =\frac{T_{3}}{\sin \left(\theta_{1}+\theta_{2}\right)}\left(\begin{array}{c}
    \cos \theta_{2} \\[14pt]
    \cos \theta_{1}
    \end{array}\right) .
    \end{align}
    \]

    Recall that we've already found \(T_{3}=m g\); then the final results are

    \[
    \begin{align}
    & T_{1}=\frac{m g \cos \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}, \\[8pt]
    & T_{2}=\frac{m g \cos \theta_{1}}{\sin \left(\theta_{1}+\theta_{2}\right)}, \\[8pt]
    & T_{3}=m g .
    \end{align}
    \]


    19.1: Mass Suspended by Two Ropes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?