Skip to main content
Physics LibreTexts

S08. The Distance-Redshift Relation - SOLUTIONS

  • Page ID
    7687
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise 8.1.1

    Answer

    \[\begin{equation*}
    \begin{aligned}
    c\int_{a_e}^{1} \frac{da}{a^2H} = \int_{0}^{d} dr = d
    \end{aligned}
    \end{equation*}\]

    \(H = \frac{\dot a}{a}\) and \(\dot a =\) constant, so we have \(H = \frac{H_0}{a}\). Now,

    \[\begin{equation*}
    \begin{aligned}
    d = \frac{c}{H_0}\int_{a_e}^{1} \frac{da}{a} = \frac{c}{H_0}\Big[\ln(1) - \ln(a_e)\Big]
    \end{aligned}
    \end{equation*}\]

    Exercise 8.2.1

    Answer

    \[\begin{equation*}
    \begin{aligned}
    \frac{c}{H_0}&\Big[-\ln(a_e) \Big] = d \\ \\ d &= \frac{c}{H_0}\ln\Big(\frac{1}{a_e}\Big) \\ \\ d &= \frac{c}{H_0}\ln(1 + z) \\ \\ d &\approx \frac{c}{H_0}z
    \end{aligned}
    \end{equation*}\]

    Now multiply both sides by \((1+z)\),

    \[\begin{equation*}
    \begin{aligned}
    d \times (1 + z) &= \frac{c}{H_0}z(1 + z) \\ \\ d_{\rm lum} &= \frac{c}{H_0}z(1 + z)
    \end{aligned}
    \end{equation*}\]

    Since \(z <<1\) we can simplify our result to \(cz=H_0 d_{\rm lum}\).


    This page titled S08. The Distance-Redshift Relation - SOLUTIONS is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Lloyd Knox.

    • Was this article helpful?