Skip to main content
Physics LibreTexts

7.8: Summary of Linear and Angular Analogs

  • Page ID
    54128
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Putting it all together

    The chart on below shows all of the linear motion and dynamic variables along with their rotational counterparts. Keep this chart out and handy for ready reference to help you from getting “lost” in all the symbols. You should make sure that you recognize the meaning behind the symbols when you see on of these relationships. 

    Summary Listing Fundamental Concepts Used in Mechanics Emphasizing Translational and Rotational Counterparts
    Category Concept Translation Rotation Relation
    Kinematic Variables

    Position 

    Velocity

    Acceleration

    \(x\)

    \(v=\dfrac{dx}{dt}\)

    \(a=\dfrac{dv}{dt}\)

    \(\theta\)

    \(\omega=\frac{d\theta}{dt}\)

    \(\alpha=\frac{d\omega}{dt}\)

    \(\theta=\frac{s}{r}\)

    \(\omega=\frac{v}{r}\)

    \(\alpha=\frac{a}{r}\)

    Fundamental Dynamic Variables

    Force/Torque 

    Mass/Inertia

    Momentum

    Impulse

    Momentum-Impulse

    \(F\)

    \(m\)

    \(p=mv\)

    \(J=\int Fdt\)

    \(J_{ext}=\Delta p\)

    \(\tau\)

    \(I\)

    \(L=I\omega\)

    \(\textrm{ang}~J=\int \tau dt\)

    \(\textrm{ang}~ J_{ext}=\Delta L\)

    \(\tau=rF_{\perp}\)

    \(I=\sum mr^2\)

    \(L=rp_{\perp}\)

      

      

    Newton's Laws

    First Law 

    Second Law

    Third Law

    \(\textrm{if}~ F_{net}=0, \textrm{then}~\Delta p=0\) 

    \(F_{net}=ma ~\textrm{or}~  F_{net}=\frac{dp}{dt}\)

    \(F_{1~on~2}=-F_{2~on~1}\)
    \(J_{1~on~2}=-J_{2~on~1}\)

    \(\textrm{if}~  \tau_{net}=0, \textrm{then}~\Delta L=0\)

    \(\tau_{net}=I\alpha ~\textrm{or}~\tau_{net}=\frac{dL}{dt}\)

    \(\tau_{1~on~2}=-\tau_{2~on~1}\)
    \(\textrm{ang}~J_{1~on~2}=-\textrm{ang}~J_{2~on~1}\)

     
    Energy

     Kinetic Energy

    Work

     

    \(KE=\frac{1}{2}mv^2\)

    \(W=\int \limits_{x_1}^{x_2} \vec F \cdot d\vec s\)

    \(KE=\frac{1}{2}I\omega^2\)

    \(W=\int \limits_{\theta_1}^{\theta_2} \vec\tau \cdot d\vec\theta\)

     

    Contributors


    This page titled 7.8: Summary of Linear and Angular Analogs is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Dina Zhabinskaya.

    • Was this article helpful?