Skip to main content
Physics LibreTexts

Module 3 - Summary

  • Page ID
    105490
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Summary Notes Module 3

    Amplitude distribution of a Gaussian beam

    \[ u(x,y,z) = A_0 \frac{w_0}{w(z)} \exp\left( - j k z \right) \exp\left( - \frac{x^2+y^2}{w^2(z)} \right) \exp\left( - j \frac{k (x^2 + y^2)}{2R(z)} \right) \exp\left( j \varphi(z) \right) \]

    \( \exp\left( - j k z \right) \) represents a plane wave

    \( \exp\left( - \frac{x^2 + y^2}{w^2(z)} \right) \) represents a Gaussian modulation

    \( \exp\left( - j \frac{k (x^2 + y^2)}{2R(z)} \right) \) represents a paraboloidal wavefront

    \( \exp\left( j \varphi(z) \right) \) represents a phase gained through propagation

    Intensity distribution of a Gaussian beam

    The irradiance/intensity distribution of a Gaussian beam follows a Gaussian function.

    \( i(x, y, z) = |u(x, y, z)|^2 = \frac{A_0^2}{w_0^2} \frac{w^2(z)}{w_0^2} \exp\left( -2 \frac{x^2 + y^2}{w^2(z)} \right) \)

    clipboard_e83a33bad5e07f4c38e4da1d1eef35d39.png

    86% of the intensity is located within the beam waist \( w_0 \).

    Beam Parameters

    The beam width is given by: \[ w(z) = w_0 \sqrt{1 + \left( \frac{z}{z_0} \right)^2} \]

    The beam waist is: \[ w_0 = \sqrt{\frac{\lambda z_0}{\pi}} \]

    The Rayleigh range/distance is: \[ z_0 = \frac{\pi w_0^2}{\lambda} \]

    The beam curvature is: \[ R(z) = z \left[ 1 + \left( \frac{z_0}{z} \right)^2 \right] \]

    The phase retardance is: \[ \varphi(z) = \tan^{-1} \left( \frac{z}{z_0} \right) \]

    Relation between intensity distributions at two axial planes

    At \( z = 0 \) (waist plane), the beam width coincides with the beam waist, \( w(z = 0) = w_0 \). The intensity at \( z = 0 \) is: \[ i_0(x, y) = i(x, y, z = 0) = |u(x, y, z = 0)|^2 = \frac{A_0^2}{w_0^2} \exp \left( -2 \frac{x^2 + y^2}{w_0^2} \right) \]

    The intensity at any axial plane \( z \) is: \[ i(x, y, z) = \left| u(x, y, z) \right|^2 = \frac{A_0^2}{w_0^2} \frac{w^2(z)}{w_0^2} \exp \left( -2 \frac{x^2 + y^2}{w^2(z)} \right) = \frac{1}{M^2} i_0(x, y) \]

    where \( M = \frac{w(z)}{w_0} \)

    Power of Gaussian Beams. The power is given by: \[ P = \frac{1}{2} i_0 \left( \pi w_0^2 \right) \] which is independent of \( z \).

    Energy Conservation Law for Gaussian Beams

    \[ \int_0^\infty i(\rho, z) 2\pi \rho d\rho = \int_0^\infty i_0(\rho) 2\pi \rho d\rho \] \[ \int_0^\infty i(\rho, z) 2\pi \rho d\rho = \int_0^\infty \frac{1}{M^2} i_0(x, y) 2\pi \rho d\rho = \int_0^\infty i_0(x', y') 2\pi \rho' d\rho' \]

    Where we have defined a new variable \( x' = \frac{x}{M} \) and \( y' = \frac{y}{M} \).

    Features of Gaussian Beams

    clipboard_e8888dc2d23181d68b7c263ca1fe2e48a.png

    • At any transverse plane (z): \( w(z) > w_0 \)
    • If \( z = \pm z_0 \), \( w(z = \pm z_0) = \sqrt{2} w_0 \), which means that at the area of the spot beam \( (\pi w^2(z)) \) it is double \( (2 \pi w_0^2) \) at \( z = \pm z_0 \)
    • Depth of focus: \( 2z_0 \), defined as the axial range in which the beam width is “almost” constant
    • If \( z = 0 \) (i.e., beam waist plane), \( R(z = 0) = \infty \), so \( \exp\left( - j \frac{k (x^2 + y^2)}{2R(z)} \right) = 1 \). In other words, there is no spherical wavefront term, i.e., the wavefront is a plane wave at the beam waist.
    • If \( z = \pm z_0 \) (i.e., Rayleigh range), the radius of curvature is minimum: \( R(z = \pm z_0) = \pm 2z_0 \)
    • If \( z \gg z_0 \), the beam width is linearly proportional to the distance \( z \): \[ w(z) = w_0 \frac{z}{z_0} \]

    clipboard_ebcc4b9df2be5ffc9cd19280a6a9c0191.png

    • Beam divergence \( \theta_0 = \frac{w_0}{z_0} = \frac{\lambda}{\pi w_0} \
    • If \( z \gg z_0 \), \( R(z) = z \), which means the Gaussian beam acts as a spherical wave confined within the divergence angle \( \theta_0 \).

    q-parameter: \( q(z) = z + j z_0 = \frac{1}{R(z)} - j \frac{\lambda}{\pi w^2(z)} \) where \( z \) is the distance of the Gaussian beam to its beam waist, and \( z_0 \) is its Rayleigh range.

    Propagation of Gaussian Beams through ABCD Matrix Optics: A Gaussian beam propagating through optical components remains a Gaussian beam. However, its features change on the ABCD matrix of the optical system.

    \[ q_2 = z_2 + j z_{02}, \quad q_2 = \frac{C q_1 + D}{A q_1 + B} \] where \( q_2 \) defines a Gaussian beam at \( z_2 \) and Rayleigh range \( z_0^2 \).

    clipboard_e22aa06ef7f98fcd30c1a63e0ebe35583.png


    Module 3 - Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?