Skip to main content
Physics LibreTexts

S10. A Newtonian Homogeneous Expanding Universe - SOLUTIONS

  • Page ID
    7727
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise 10.1.1

    Answer

    Since \(\vec x(t) = a(t) \vec x_{\rm c}\) with \(\vec x_{\rm c} \) a constant, we have \(\vec v = dx(t)/dt = \dot a \vec x_{\rm c} = (\dot a/a) \vec x\) which is Hubble's law with the proportionality between velocity and distance given by \( \dot a/a \). For the second part, note that \( \vec \nabla  = \hat x \partial/\partial x + \hat y \partial/\partial y + \hat z \partial/\partial z \) and \(\vec v = (\dot a/a)(x\hat x + y\hat y+ z\hat z)\) so \(\vec \nabla \cdot \vec v = (\dot a/a)\times (1+1+1) = 3 (\dot a/a)\). (Here we've used e.g. \( \hat x\) as the unit vector in the \(x\) direction.) 


    This page titled S10. A Newtonian Homogeneous Expanding Universe - SOLUTIONS is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Lloyd Knox.

    • Was this article helpful?