Skip to main content
Physics LibreTexts

2.2A: Point Charge

  • Page ID
    5835
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Let us arbitrarily assign the value zero to the potential at an infinite distance from a point charge \(Q\). “The” potential at a distance \(r\) from this charge is then the work required to move a unit positive charge from infinity to a distance \(r\).

    At a distance x from the charge, the field strength is \(\frac{Q}{4\pi\epsilon_0 x^2}\). The work required to move a unit charge from \(x \text{ to }x + δx\) is \(-\frac{Q\,\delta x}{4\pi\epsilon_0 x^2}\). The work required to move unit charge from \(r\) to infinity is \(-\frac{Q}{4\pi\epsilon_0}\int_r^{\infty}\frac{dx}{x^2}=-\frac{Q}{4\pi\epsilon_0 r}\). The work required to move unit charge from infinity to \(r\) is minus this.

    Therefore

    \[V=+\frac{Q}{4\pi\epsilon_0 r}.\label{2.2.1}\]

    The mutual potential energy of two charges \(Q_1 \text{ and }Q_2\) separated by a distance \(r\) is the work required to bring them to this distance apart from an original infinite separation. This is

    \[P.E.=+\frac{Q_1Q_2}{4\pi\epsilon_0 r^2}\label{2.2.2}.\]

    Before proceeding, a little review is in order.

    Field at a distance \(r\) from a charge \(Q\):

    \[E=\frac{Q}{4\pi\epsilon_0 r^2},\quad \quad \text{N C}^{-1} \text{ or } \text{V m}^{-1}\]

    or, in vector form,

    \[\textbf{E}=\frac{Q}{4\pi\epsilon_0 r^2}\hat{\textbf{r}}=\frac{Q}{4\pi\epsilon_0 r^3}\textbf{r}. \quad \quad \text{N C}^{-1}\text{ or }\text{V m}^{-1}\]

    Force between two charges, \(Q_1 \text{ and }Q_2\):

    \[F=\frac{Q_1Q_2}{4\pi\epsilon r^2}.\quad \quad \text{N}\]

    Potential at a distance \(r\) from a charge \(Q\):

    \[V=\frac{Q}{4\pi\epsilon_0 r}.\quad \quad \text{V}\]

    Mutual potential energy between two charges:

    \[\text{P.E.}=\frac{Q_1Q_2}{4\pi\epsilon_0 r}.\quad \quad \text{J}\]

    We couldn’t possibly go wrong with any of these, could we?


    This page titled 2.2A: Point Charge is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.