Skip to main content
Physics LibreTexts

7.P: Exercises

  • Page ID
    1225
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Calculate the energy-shift in the ground state of the one-dimensional harmonic oscillator when the perturbation $ V = \lambda\,x^4
$ is added to $ H = \frac{p_x^{\,2}}{2\,m} + \frac{1}{2}\,m\,\omega^2\,x^2.
$ The properly normalized ground-state wavefunction is $ \psi(x) = \left(\frac{m\,\omega}{\pi\,\hbar}\right)^{1/4}\,\exp\left(-\frac{m\,\omega^2\,x^2}{2\,\hbar}\right).
$
    2. Calculate the energy-shifts due to the first-order Stark effect in the \( n=3\) state of a hydrogen atom. You do not need to perform all of the integrals, but you should construct the correct linear combinations of states.
    3. The Hamiltonian of the valence electron in a hydrogen-like atom can be written $ H = \frac{p^2}{2\,m_e} + V(r) - \frac{p^4}{8\,m_e^{\,3}\,c^2}.
$ Here, the final term on the right-hand side is the first-order correction due to the electron's relativistic mass increase. Treating this term as a small perturbation, deduce that it causes an energy-shift in the energy eigenstate characterized by the standard quantum numbers \( n\) , \( l\) , \( m\) of $ {\mit\Delta}E_{nlm} = -\frac{1}{2\,m_e\,c^2}\left(E_n^{\,2} - 2\,E_n\,\langle V\rangle + \langle V^{\,2}\rangle\right),
$ where \( E_n\) is the unperturbed energy, and \( \alpha\) the fine structure constant.
    4. Consider an energy eigenstate of the hydrogen atom characterized by the standard quantum numbers \( n\) , \( l\) , and \( m\) . Show that if the energy-shift due to spin-orbit coupling (see Section 7.7) is added to that due to the electron's relativistic mass increase (see previous exercise) then the net fine structure energy-shift can be written $ {\mit\Delta} E_{nlm} = \frac{\alpha^2\,E_n}{n^2}\left(\frac{n}{j+1/2}-\frac{3}{4}\right).
$ Here, \( E_n\) is the unperturbed energy, \( \alpha\) the fine structure constant, and \( j=l\pm 1/2\) the quantum number associated with the magnitude of the sum of the electron's orbital and spin angular momenta. You will need to use the following standard results for a hydrogen atom:
    5. \( \left\langle \frac{a_0}{r}\right\rangle\) \( = \frac{1}{n^2},\) \( \left\langle \frac{a_0^{\,2}}{r^2}\right\rangle\) \( = \frac{1}{(l+1/2)\,n^3},\) \( \left\langle \frac{a_0^{\,3}}{r^3}\right\rangle\) \( = \frac{1}{l\,(l+1/2)\,(l+1)\,n^3}.\) Here, \( a_0\) is the Bohr radius. Assuming that the above formula for the energy shift is valid for \( l=0\) (which it is), show that fine structure causes the energy of the \( (2p)_{3/2}\) states of a hydrogen atom to exceed those of the \( (2p)_{1/2}\) and \( (2s)_{1/2}\) states by \( 4.5\times 10^{-5}\,{\rm eV}\) .

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 7.P: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?