Skip to main content
Physics LibreTexts

11.3: Lorentz Invariance of Dirac Equation

  • Page ID
    1255
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider two inertial frames, \( S'\) . Let the \( x^{\,\mu'}\) be the space-time coordinates of a given event in each frame, respectively. These coordinates are related via a Lorentz transformation, which takes the general form

    \( a^{\,\mu}_{~\nu}\) are real numerical coefficients that are independent of the \( x_{\mu'} = a_{\mu}^{~\nu}\,x_\nu.\) \ref{1146}

    Now, since [see Equation \ref{1102}]

    \( a^{\,\mu}_{~\nu}\,a_\mu^{~\lambda} = g_\nu^{~\lambda}.\) \ref{1148}

    Moreover, it is easily shown that

    \( = a_\nu^{~\mu}\,x^{\nu'},\) \ref{1149} \( = a^\nu_{~\mu}\,x_{\nu'}.\) \ref{1150}

    By definition, a 4-vector \( x^{\,\mu}\) . Thus,

    \( = a^{\,\mu}_{~\nu}\,p^\nu,\) \ref{1151} \( = a_\nu^{~\mu}\,p^{\nu'},\) \ref{1152}

    etc.

    In frame \( \left[\gamma^{\,\mu}\left(p_\mu- \frac{e}{c}\,{\mit\Phi}_\mu\right)-m_e\,c\right]\psi = 0.\) \ref{1153}

    Let \( S'\) . Suppose that

    \( A\) is a \( x^{\,\mu}\) . (Hence, \( A\) commutes with the \( {\mit\Phi}_\mu\) .) Multiplying \ref{1153} by \( A\) , we obtain

    \( p_\mu\) and \( \left[A\,\gamma^{\,\mu}\,A^{-1}\,a^\nu_{~\mu}\left(p_{\nu'}- \frac{e}{c}\,{\mit\Phi}_{\nu'}\right)-m_e\,c\right]\psi' = 0.\) \ref{1156}

    Suppose that

    \( A^{-1}\,\gamma^\nu\,A = a^\nu_{~\mu}\,\gamma^{\,\mu}.\) \ref{1158}

    Here, we have assumed that the \( A\) and the \( \left[\gamma^{\,\mu}\left(p_{\mu'}- \frac{e}{c}\,{\mit\Phi}_{\mu'}\right)-m_e\,c\right]\psi' = 0.\) \ref{1159}

    A comparison of this equation with \ref{1153} reveals that the Dirac equation takes the same form in frames \( S'\) . In other words, the Dirac equation is Lorentz invariant. Incidentally, it is clear from \ref{1153} and \ref{1159} that the \( A\) that satisfies \ref{1158}. Consider an infinitesimal Lorentz transformation, for which

    \( {\mit\Delta}\omega_\mu^{~\nu}\) are real numerical coefficients that are independent of the \( {\mit\Delta}\omega^{\,\mu\,\nu} + {\mit\Delta}\omega^{\nu\,\mu} = 0.\) \ref{1161}

    Let us write

    \( \sigma_{\mu\,\nu}\)
    are \( 4\times 4\) matrices. To first order in small quantities,

    \( \sigma_{\mu\,\nu} = -\sigma_{\nu\,\mu}.\) \ref{1164}

    To first order in small quantities, Equations \ref{1158}, \ref{1160}, \ref{1162}, and \ref{1163} yield

    $ {\mit\Delta}\omega^\nu_{~\beta}\,\gamma^{\,\beta} = -\frac{\rm i}...
...(\gamma^\nu\,\sigma_{\alpha\,\beta}- \sigma_{\alpha\,\beta}\,\gamma^\nu\right).$ \ref{1165}

    Hence, making use of the symmetry property \ref{1161}, we obtain

    $ {\mit\Delta}\omega^{\alpha\,\beta}\,(g^\nu_{~\alpha}\,\gamma_\bet...
...beta}\,(\gamma^\nu\,\sigma_{\alpha\,\beta}-\sigma_{\alpha\,\beta}\,\gamma^\nu),$ \ref{1166}

    where \( {\mit\Delta}\omega^{\alpha\,\beta}\) , we deduce that

    \( \sigma_{\mu\,\nu} = \frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Purgatory/Book:_Quantum_Mechanics_(Fitzpatrick)/11:_Relativistic_Electron_Theory/11.3:_Lorentz_Invariance_of_Dirac_Equation), /content/body/tr[12]/td[1]/span, line 1, column 1
    
    {2}\,[\gamma_\mu,\gamma_\nu].\) \ref{1168}

    Hence,

    \( = 1 + \frac{1}{8}\,[\gamma_\mu,\gamma_\nu]\,{\mit\Delta}\omega^{\,\mu\,\nu},\) \ref{1169} \( = 1 - \frac{1}{8}\,[\gamma_\mu,\gamma_\nu]\,{\mit\Delta}\omega^{\,\mu\,\nu}.\) \ref{1170}

    Now that we have found the correct transformation rules for an infinitesimal Lorentz transformation, we can easily find those for a finite transformation by building it up from a large number of successive infinitesimal transforms.

    Making use of \ref{1127}, as well as \( A^\dag = 1-\frac{1}{8}\,\gamma^0\,[\gamma_\mu,\gamma_\nu]\,\gamma^0\,{\mit\Delta}\omega^{\,\mu\,\nu} = \gamma^0\,A^{-1}\,\gamma^0.\) \ref{1171}

    Hence, \ref{1158} yields

    \( \psi^\dag\,A^\dag\,\gamma^0\,\gamma^{\,\mu}\,A\,\psi= a^{\,\mu}_{~\nu}\,\psi^\dag\,\gamma^0\,\gamma^\nu\,\psi,\) \ref{1173}

    or

    \( j^{\,\mu'} = a^{\,\mu}_{~\nu}\,j^{\,\nu},\) \ref{1175}

    where the \( j^{\,\mu}\) transform as the contravariant components of a 4-vector.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)


    This page titled 11.3: Lorentz Invariance of Dirac Equation is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?