Skip to main content
Physics LibreTexts

1.4: Outline of Course

  • Page ID
    1251
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The first part of the course is devoted to an in-depth exploration of the basic principles of quantum mechanics. After a brief review of probability theory, in Chapter 2, we shall start, in Chapter 3, by examining how many of the central ideas of quantum mechanics are a direct consequence of wave-particle duality--i.e., the concept that waves sometimes act as particles, and particles as waves. We shall then proceed to investigate the rules of quantum mechanics in a more systematic fashion in Chapter 4. Quantum mechanics is used to examine the motion of a single particle in one dimension, many particles in one dimension, and a single particle in three dimensions, in Chapters 5, 6, and 7, respectively. Chapter 8 is devoted to the investigation of orbital angular momentum, and Chapter 9 to the closely related subject of particle motion in a central potential. Finally, in Chapters 10 and 11, we shall examine spin angular momentum, and the addition of orbital and spin angular momentum, respectively.

    The second part of this course describes selected practical applications of quantum mechanics. In Chapter 12, time-independent perturbation theory is used to investigate the Stark effect, the Zeeman effect, fine structure, and hyperfine structure, in the hydrogen atom. Time-dependent perturbation theory is employed to study radiative transitions in the hydrogen atom in Chapter 13. Chapter 14 illustrates the use of variational methods in quantum mechanics. Finally, Chapter 15 contains an introduction to quantum scattering theory.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 1.4: Outline of Course is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?