Skip to main content
\(\require{cancel}\)
Physics LibreTexts

5: Interlude - The Nature of Electrons

  • Page ID
    5655
    • 5.1: Bosons and Fermions
      So far, we have used Schrödinger’s equation to see how a single particle, usually an electron, behaves in a variety of potentials. If we are going to think about atoms other than hydrogen, it is necessary to extend the Schrödinger equation so that it describes more than one particle. All elementary particles are either fermions, which have antisymmetric multiparticle wavefunctions, or bosons, which have symmetric wave functions. Electrons, protons and neutrons are fermions; photons are bosons.
    • 5.2: Multielectron Atoms
      The electron both orbits the nucleus and "spins" on its own axis. This results in a spin one-half and hence two possible spin orientations with respect to a given axis explains the observed Stern-Gerlach results, and also, more importantly, helps us construct the periodic table.

    Contributors and Attributions