Skip to main content
Physics LibreTexts

6: Waves

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    • 6.1: Frequency
    • 6.2: Phase
      We defined a (Lorentz) invariant as a quantity that was unchanged under rotations and Lorentz boosts. A uniform scaling of the coordinates (t,x,y,z)→(kt,kx,ky,kz) , which is analogous to a change of units,1 is all right as long as k is nonzero. A quantity that stays the same under any diffeomorphism is called a scalar. Since a Lorentz transformation is a diffeomorphism, every scalar is a Lorentz invariant. Not every Lorentz invariant is a scalar.
    • 6.3: The Frequency-Wavenumber Covector
    • 6.4: Duality
      To generalize this to 3+1 dimensions, we need to use the metric — a piece of machinery that we have never had to employ since the beginning of the chapter.
    • 6.5: The Doppler Shift and Aberration
      We generalize our previous discussion of the Doppler shift of light to 3+1 dimensions. Imagine that rain is falling vertically while you drive in a convertible with the top down. To you, the raindrops appear to be moving at some nonzero angle relative to vertical. This is referred to as aberration.
    • 6.6: Phase and Group Velocity
    • 6.7: Abstract Index Notation
    • 6.E: Waves (Exercises)

    Thumbnail: Two-dimensional representation of gravitational waves generated by two neutron stars orbiting each other. (Public Domain; NASA).

    This page titled 6: Waves is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Benjamin Crowell via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?