Skip to main content
Physics LibreTexts

S21: Equilibrium Particle Abundances

  • Page ID
    32745
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise 21.1.1

    Answer

    We start from 

    \[n_\chi = \frac{g}{h^3}\int d^3p \left[\exp\left(\frac{E(p)}{k_B T}\right) +1 \right]^{-1}\]

    and \(E(p) = pc\). 

    Because the integrand only depends on the magnitude of the momentum, \(p = \sqrt{p_x^2+p_y^2+p_z^2}\), we are motivated to transform from the Cartesian \(p_x,p_y,p_z\) to spherical coordinates \(p,\theta_p,\phi_p\), just like we have done before in configuration space (\(x,y,z \rightarrow r,\theta,\phi\)). The area of a sphere in momentum space of radius p is \( 4\pi p^2 \) and the volume contained in a spherical shell that extends from \(p\) to \(p+dp\) is \(4\pi p^2 dp\). So we can replace \(\int d^3p\) with \(\int 4\pi p^2 dp\). So we have

    \[n_\chi = \frac{4\pi g}{h^3}\int p^2 dp \left[\exp\left(\frac{pc}{k_B T}\right) +1 \right]^{-1}.\]

    Setting \(x = pc/(k_B T)\) so \(p=xk_BT/c\) and \(dp = dx k_BT/c\) we get

    \[n_\chi = \frac{4\pi g}{h^3}\left(\frac{k_B T}{c}\right)^3\int x^2 dx \left[e^x +1 \right]^{-1}.\]

     

     

    Exercise 21.2.1

    Answer

    The parameter \(x = mc^2/(k_B T)\) determines whether the particles are relativistic or non-relativistic. The typical kinetic energy is given roughly by \(k_B T\) and the rest mass energy is \(mc^2\). For \(x<<1\) kinetic energy is much greater than rest mass energy, which means the particles are relativistic. For \(x>>1\) we have the reverse so the particles are non-relativistic. 

    In the relativistic limit we saw above that \(n_\chi \propto T^3\). Since \(a \propto 1/T\) we have \(a^3 n_\chi \propto T^{-3}T^3 = T^0\) is indepdent of \(T\) and therefore independent of \(x\). Therefore the graph of \(a^3 n_\chi\) vs. \(x\) at low \(x\) is a horizontal line. 

    In the non-relativistic limit we have 

    \[a^3 n_\chi \propto e^{-x}x^{3/2}. \]

    An exponential always eventually wins over a power-law so at large enough \(x\), \(a^3 n_\chi\) will be a decreasing function of \(x\). 

    If we smoothly connect a decreasing function of \(x\) at high \(x\) with the horizontal line at low \(x\) we'll get something qualitatively similar to the graph shown in the next chapter. 

     


    This page titled S21: Equilibrium Particle Abundances is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Lloyd Knox.

    • Was this article helpful?