Skip to main content
Physics LibreTexts


  • Page ID
    • Wendell Potter and David Webb et al.
    • UC Davis
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)


    The functions \(\sin (\theta)\) and \(\cos (\theta)\) are defined such that, if you drew a circle of radius \(r\) with a triangle inset like the one below, the lengths of the sides will have the listed values:


    As the picture suggests, \(\sin \theta\) and \(\cos \theta\) have values that repeat when you increase or decrease \(\theta\) by increments of \(2 \pi\).

    Using the figure above and the Pythagorean Theorem, we can write

    \[(r\sin\theta)^2 + (r\cos\theta)^2 = r^2\]

    Dividing the whole equation by \(r^2\) we obtain the useful result:

    \[\sin^2\theta + \cos^2\theta = 1\]

    where \(\sin^2\theta\) is just a short way of writing \((\sin\theta)^2\). The above equation is true for any value of \(\theta\).

    Using the above results, we can also derive these equations:

    \[\tan\theta = \dfrac{\sin\theta}{\cos\theta}\]

    \[\sin\theta = \pm\sqrt{1-\cos^2\theta}\]

    \[\cos\theta = \pm\sqrt{1-\sin^2\theta}\]

    Trigonometric Identities

    \[\sin A + \sin B = 2\sin\left(\dfrac{A + B}{2}\right)\cos\left(\dfrac{A - B}{2}\right)\]

    \[\cos A + \cos B = 2\cos\left(\dfrac{A + B}{2}\right)\cos\left(\dfrac{A - B}{2}\right)\]

    \[\sin(A + B) = \sin A \cos B + \sin B \cos A\]

    \[\cos(A + B) = \cos A \cos B - \sin A \sin B\]

    \[\tan(A+B) = \dfrac{\tan A + \tan B}{1 - \tan A\tan B}\]

    Small-Angle Approximation

    If \(\theta\), expressed in radians, is close to zero, then we can approximate:

    \[\sin\theta \approx \theta\]

    \[\cos\theta \approx 1\]

    \[\tan\theta \approx \theta\]

    This page titled Trigonometry is shared under a not declared license and was authored, remixed, and/or curated by Wendell Potter and David Webb et al..

    • Was this article helpful?