# 5: Rotations and Rigid Bodies

- Page ID
- 16321

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

- 5.1: Rotational Kinematics
- Our first foray into linear motion was with kinematics, and we start our discussion of rotation with the same topic.

- 5.2: Rotational Inertia
- With the basics of rotational motion and inertia now in hand, we take on the topic of dynamics. We do so by closely paralleling what we know from linear dynamics.

- 5.3: Dynamics of Rotating Objects
- We continue our exploration of rotational dynamics by looking at it in greater detail than the "before/after" limitations of energy conservation allow.

- 5.4: Torque
- We have discussed rotational acceleration and rotational inertia. We now complete Newton's second law by looking at "rotational force."

- 5.5: Static Equilibrium
- A particularly useful application of torques involves systems that remain static. Obviously energy conservation won't help analyze these systems, as there is never any kinetic energy. We will develop tools for analyzing these types of systems.