Skip to main content
Library homepage
 
Physics LibreTexts

4: Quantum Mechanics in Multiple Dimensions

  • Page ID
    17180
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 4.1: Expanding to Three Dimensions
      We look at a few of the differences we encounter when we increase the number of spatial dimension for our Hilbert Space from one to three.
    • 4.2: Cartesian Symmetry
      We begin our work in three dimensions by examining how to handle quantum systems that are best described in cartesian coordinates.
    • 4.3: Spherical Symmetry
      We continue our discussion of dealing with three dimensions, this time looking at how to handle quantum systems that are best described in spherical coordinates.
    • 4.4: Physical Meaning of Angular Quantum Numbers
      We take a closer look at the three quantum numbers we found for the separable stationary-state solutions to the Schrödinger equation, make links to physical quantities and discuss how these exhibit distinctive "quantum" behavior.


    This page titled 4: Quantum Mechanics in Multiple Dimensions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Tom Weideman directly on the LibreTexts platform.

    • Was this article helpful?