First, we find p(T,z): \[\begin{split} p(T,z)&=-\kT\!\int\!\!{d^3\!k\over (2\pi)^3}\,\ln\Big(1- z\,\exp(-Ak^{1/2}/\kT)\Big)\\ &=-{\kT\over\pi^2}\bigg({\kT\over A}\bigg)^{\!\!6}\int\limits_0^\infty...First, we find p(T,z): p(T,z)=−\kT∫d3k(2π)3ln(1−zexp(−Ak1/2/\kT))=−\kTπ2(\kTA)6∞∫0dss5ln(1−ze−s)=120\kTπ2(\kTA)6Li\nd7(z). Expanding in powers of the fugacity, we have \[\begin{split} n&={120\over \pi^2}\,\bigg({\kT\over A}\bigg)^{\!\!6}\,\Big\{z+{z^2\over 2^6} + {z^3\over 3^6} + \ldots \Big\}\\ {…