Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Applications_of_Maxwells_Equations_(Cochran_and_Heinrich)/01%3A_Maxwells_Equations/1.06%3A_The_CGS_System_of_Units
      \[ \begin{align} &\operatorname{curl}(\overrightarrow{\mathrm{E}})=-\frac{1}{c} \frac{\partial \overrightarrow{\mathrm{B}}}{\partial t}.\\& \operatorname{div}(\overrightarrow{\mathrm{B}})=0.\\& \opera...\[ \begin{align} &\operatorname{curl}(\overrightarrow{\mathrm{E}})=-\frac{1}{c} \frac{\partial \overrightarrow{\mathrm{B}}}{\partial t}.\\& \operatorname{div}(\overrightarrow{\mathrm{B}})=0.\\& \operatorname{curl}(\overrightarrow{\mathrm{B}})=\frac{4 \pi}{c}\left(\overrightarrow{\mathrm{J}}_{f}+\operatorname{ccurl}(\overrightarrow{\mathrm{M}})+\frac{\partial \overrightarrow{\mathrm{P}}}{\partial t}\right)+\frac{1}{c} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial t}. \\& \operatorname{div…
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/16%3A_CGS_Electricity_and_Magnetism/16.03%3A_The_CGS_Electromagnetic_System
      One CGS emu of magnetic pole strength is that pole which, if placed 1 cm from a similar pole in vacuo, will repel it with a force of 1 dyne. The system is based on the proposition that there exists a...One CGS emu of magnetic pole strength is that pole which, if placed 1 cm from a similar pole in vacuo, will repel it with a force of 1 dyne. The system is based on the proposition that there exists a "pole" at each end of a magnet, and that point poles repel each other according to an inverse square law.

    Support Center

    How can we help?