Since the argument of the complex exponential factors is \(2\beta l\), the frequency at which \(Z_{in}(l)\) varies is \(\beta/\pi\); and since \(\beta=2\pi/\lambda\), the associated period is \(\lambd...Since the argument of the complex exponential factors is \(2\beta l\), the frequency at which \(Z_{in}(l)\) varies is \(\beta/\pi\); and since \(\beta=2\pi/\lambda\), the associated period is \(\lambda/2\).
Since the argument of the complex exponential factors is \(2\beta l\), the frequency at which \(Z_{in}(l)\) varies is \(\beta/\pi\); and since \(\beta=2\pi/\lambda\), the associated period is \(\lambd...Since the argument of the complex exponential factors is \(2\beta l\), the frequency at which \(Z_{in}(l)\) varies is \(\beta/\pi\); and since \(\beta=2\pi/\lambda\), the associated period is \(\lambda/2\).