Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/02%3A_Thermodynamics/2.14%3A_Appendix_I-_Integrating_Factors
      Then along each curve we have \[\begin{split} 0={dU\ns_c\over dx}&={\pz U\ns_x\over\pz x} + {\pz U\ns_c\over\pz y}\,{dy\over dx}\vph\\ &={\pz U\ns_c\over \pz x} - {A\ns_x\over A\ns_y}\,{\pz U\ns_c\ove...Then along each curve we have \[\begin{split} 0={dU\ns_c\over dx}&={\pz U\ns_x\over\pz x} + {\pz U\ns_c\over\pz y}\,{dy\over dx}\vph\\ &={\pz U\ns_c\over \pz x} - {A\ns_x\over A\ns_y}\,{\pz U\ns_c\over\pz y}\ . \end{split}\] Thus, \[{\pz U\ns_c\over\pz x}\,A\ns_y = {\pz U\ns_c\over\pz y}\,A\ns_x \equiv e^{-L} A\ns_x\,A\ns_y\ .\] This equation defines the integrating factor \(L\,\): \[L=-\ln\!\bigg({1\over A\ns_x}\,{\pz U\ns_c\over\pz x}\bigg) = -\ln\!\bigg({1\over A\ns_y}\,{\pz U\ns_c\over\pz y…
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Heat_and_Thermodynamics_(Tatum)/02%3A_Partial_Derivatives/2.05%3A_Second_Derivatives_and_Exact_Differentials
      If \(z = z(x , y)\), we can go through the motions of calculating \( \frac{\partial z}{\partial x}\) and \( \frac{\partial z}{\partial y}\), and we can then further calculate the second derivatives \(...If \(z = z(x , y)\), we can go through the motions of calculating \( \frac{\partial z}{\partial x}\) and \( \frac{\partial z}{\partial y}\), and we can then further calculate the second derivatives \( \frac{\partial ^2 z}{\partial x^2}\), \(\frac{\partial ^2 x}{\partial y^2}\), \( \frac{\partial ^2 z}{\partial y \partial x}\) and \(\frac{\partial ^2 z}{\partial y \partial x}\).

    Support Center

    How can we help?