Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Optics/BSc_Optics_(Konijnenberg_Adam_and_Urbach)/04%3A_Polarization/4.04%3A_How_to_verify_whether_a_Jones_Matrix_is_a_Linear_Polariser_or_a_Wave_Plate
      In other words, there must be an orthogonal basis of real eigenvectors and one of the eigenvalues must be 1 and the other 0 . Hence, to check that a given matrix corresponds to a linear polariser, one...In other words, there must be an orthogonal basis of real eigenvectors and one of the eigenvalues must be 1 and the other 0 . Hence, to check that a given matrix corresponds to a linear polariser, one should verify that one eigenvalue is 1 and the other is 0 and furthermore that the eigenvectors are real vectors.
    • https://phys.libretexts.org/Bookshelves/Optics/BSc_Optics_(Konijnenberg_Adam_and_Urbach)/04%3A_Polarization/4.03%3A_Creating_and_Manipulating_Polarisation_States
      To find the components E_{x^{\prime}}, E_{y^{\prime}} on the \widehat{\mathbf{x}}^{\prime}, \widehat{\mathbf{y}}^{\prime} basis: \[\mathbf{E}=E_{x^{\prime}} \widehat{\mathbf{x}}^{\prime}+E_{y^...To find the components E_{x^{\prime}}, E_{y^{\prime}} on the \widehat{\mathbf{x}}^{\prime}, \widehat{\mathbf{y}}^{\prime} basis: \mathbf{E}=E_{x^{\prime}} \widehat{\mathbf{x}}^{\prime}+E_{y^{\prime}} \widehat{\mathbf{y}}^{\prime} , \nonumber we first write the unit vectors \widehat{\mathbf{x}}^{\prime} and \widehat{\mathbf{y}}^{\prime} in terms of the basis \hat{\mathbf{x}}, \hat{\mathbf{y}} (see Figure \PageIndex{1} ) \[\begin{aligned} &\widehat{\mathbf{x}}^{\prime…

    Support Center

    How can we help?