Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/21%3A_Central_Forces_and_Equivalent_Potential/21.04%3A_Hooke%E2%80%99s_Law
      The force constant of the spring is \(k\), the force on the particle is \(−kr\) and the potential (elastic) energy is \( V = \frac{1}{2} kr^2 \). It is difficult to imagine whether such forces actuall...The force constant of the spring is \(k\), the force on the particle is \(−kr\) and the potential (elastic) energy is \( V = \frac{1}{2} kr^2 \). It is difficult to imagine whether such forces actually exist in nature (the field of an electric dipole falls off as the cube of the distance - but the field is not radial, and the force is not a central force), and to that extent much of what follows is an exercise in mathematics more than in physics.

    Support Center

    How can we help?