Search
- Filter Results
- Location
- Classification
- Include attachments
- https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/04%3A_Static_and_Quasistatic_Fields/4.01%3A_IntroductionThis page discusses static electric and magnetic fields in the context of Maxwell’s equations, focusing on their behavior when time derivatives are absent. It covers the relationships between electric...This page discusses static electric and magnetic fields in the context of Maxwell’s equations, focusing on their behavior when time derivatives are absent. It covers the relationships between electric fields and charge distributions, the roles of electric and magnetic potentials, and the derivation of Laplace’s equation under partial charge knowledge. Quasistatic conditions enable simplifications in analyzing field interactions.
- https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/02%3A_Introduction_to_Electrodynamics/2.02%3A_Electromagnetic_waves_in_the_time_domainThis page explains Maxwell's equations, which predict electromagnetic waves' existence and behavior in a vacuum using parameters like permittivity and permeability. It establishes that electric fields...This page explains Maxwell's equations, which predict electromagnetic waves' existence and behavior in a vacuum using parameters like permittivity and permeability. It establishes that electric fields propagate perpendicular to their direction of travel, leading to polarization.
- https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_and_Applications_(Staelin)/09%3A_Electromagnetic_Waves/9.05%3A_Waves_in_complex_mediaThis page explores wave behavior in anisotropic media and birefringent materials, emphasizing how direction-dependent properties affect wave propagation and polarization. It delves into plasma dynamic...This page explores wave behavior in anisotropic media and birefringent materials, emphasizing how direction-dependent properties affect wave propagation and polarization. It delves into plasma dynamics, including phase and group velocities, dispersion phenomena, and the implications of wave behavior relative to the plasma frequency. Additionally, it discusses exponential decay of waves, particularly the delay between electric and magnetic fields, leading to unique energy storage characteristics.