Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 4 results
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/13%3A_Alternating_Current/13.03%3A_Complex_Numbers
      I am now going to repeat the analyses of Sections 13.1 and 13.2 using the notation of complex numbers. In the context of alternating current theory, the imaginary unit is customarily given the symbol ...I am now going to repeat the analyses of Sections 13.1 and 13.2 using the notation of complex numbers. In the context of alternating current theory, the imaginary unit is customarily given the symbol jj rather than ii , so that the symbol ii is available, if need be, for electric currents.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/08%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/8.03%3A_Reactance_Inductive_and_Capacitive
      \[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.02%3A_Reactance_Inductive_and_Capacitive
      \[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/22%3A_Induction_AC_Circuits_and_Electrical_Technologies/22.2%3A_AC_Circuits
      Induction is the process in which an emf is induced by changing magnetic flux, such as a change in the current of a conductor.

    Support Center

    How can we help?