Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 13 results
    • https://phys.libretexts.org/Courses/University_of_California_Davis/Physics_9B_Fall_2020_Taufour/03%3A_Physical_Optics/3.04%3A_Single-Slit_Diffraction
      Experimentation reveals that an interference pattern occurs when light passes through a single slit.  How can interference occur with what appears to be only a single source?  We will answer this ques...Experimentation reveals that an interference pattern occurs when light passes through a single slit.  How can interference occur with what appears to be only a single source?  We will answer this question in this section.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)/Volume_B%3A_Electricity_Magnetism_and_Optics/B23%3A_Single-Slit_Diffraction
      Single-slit diffraction is another interference phenomenon. If, instead of creating a mask with two slits, we create a mask with one slit, and then illuminate it, we find, under certain conditions, th...Single-slit diffraction is another interference phenomenon. If, instead of creating a mask with two slits, we create a mask with one slit, and then illuminate it, we find, under certain conditions, that we again get a pattern of light and dark bands.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/13%3A_Diffraction/13.02%3A_Single-Slit_Diffraction
      Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to...Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to the sides.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/14%3A_Diffraction/14.03%3A_Intensity_in_Single-Slit_Diffraction
      The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/04%3A_Diffraction/4.03%3A_Intensity_in_Single-Slit_Diffraction
      The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/11%3A_Physical_Optics/11.07%3A_Single-Slit_Diffraction
      Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to...Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to the sides.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/04%3A_Diffraction/4.02%3A_Single-Slit_Diffraction
      Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to...Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to the sides.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/14%3A_Diffraction/14.02%3A_Single-Slit_Diffraction
      Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to...Diffraction can send a wave around the edges of an opening or other obstacle. A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to the sides.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/13%3A_Diffraction/13.03%3A_Intensity_in_Single-Slit_Diffraction
      The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/04%3A_Diffraction/4.03%3A_Intensity_in_Single-Slit_Diffraction
      The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\)  where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
    • https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9B__Waves_Sound_Optics_Thermodynamics_and_Fluids/03%3A_Physical_Optics/3.04%3A_Single-Slit_Diffraction
      Experimentation reveals that an interference pattern occurs when light passes through a single slit.  How can interference occur with what appears to be only a single source?  We will answer this ques...Experimentation reveals that an interference pattern occurs when light passes through a single slit.  How can interference occur with what appears to be only a single source?  We will answer this question in this section.

    Support Center

    How can we help?