Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/02%3A_Moments_of_Inertia/2.06%3A_Three-dimensional_Solid_Figures._Spheres_Cylinders_Cones.
      Its moment of inertia about the dashed axis through the centre of the cylinder is \( \frac{m a^2 \delta x }{8l}+ \frac{m \delta x }{2l} x^2 = \frac{m(a^2+4x^2) \delta x}{8l}. \) The moment of inertia ...Its moment of inertia about the dashed axis through the centre of the cylinder is \( \frac{m a^2 \delta x }{8l}+ \frac{m \delta x }{2l} x^2 = \frac{m(a^2+4x^2) \delta x}{8l}. \) The moment of inertia of the entire cylinder about the dashed axis is \( 2 \int_{0}^{1} \frac{m(a^2+4x^2) \delta x}{8l} = m(\frac{1}{4}a^2 + \frac{1}{3} l^2)\).

    Support Center

    How can we help?