Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 18 results
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/03%3A_Vectors/3.02%3A_Scalars_and_Vectors_(Part_1)
      Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is gi...Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector.
    • https://phys.libretexts.org/Workbench/PH_245_Textbook_V2/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)
      Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is gi...Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/3%3A_Two-Dimensional_Kinematics/3.2%3A_Vectors
      Vectors are geometric representations of magnitude and direction and can be expressed as arrows in two or three dimensions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.03%3A_Scalars_and_Vectors
      Make the parallel translation of each vector to a point where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides (indicated ...Make the parallel translation of each vector to a point where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides (indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector R along the diagonal of the parallelogram from the common point to the opposite corner.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.03%3A_Scalars_and_Vectors
      Make the parallel translation of each vector to a point where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides (indicated ...Make the parallel translation of each vector to a point where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides (indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector R along the diagonal of the parallelogram from the common point to the opposite corner.
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/66%3A_Appendices/66.16%3A_Vector_Arithmetic
      where i is a unit vector (a vector of magnitude 1) in the x direction, j is a unit vector in the y direction, and k is a unit vector in the z directi...where i is a unit vector (a vector of magnitude 1) in the x direction, j is a unit vector in the y direction, and k is a unit vector in the z direction. Ax,Ay, and Az are called the x,y, and z components (respectively) of vector A, and are the projections of the vector onto those axes.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/02%3A_Vectors/2.02%3A_Scalars_and_Vectors_(Part_1)
      Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is gi...Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector.
    • https://phys.libretexts.org/Courses/Gettysburg_College/Gettysburg_College_Physics_for_Physics_Majors/03%3A_C3)_Vector_Analysis/3.02%3A_Vector_Algebra_in_1_Dimension
      Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is gi...Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/03%3A_Vectors/3.02%3A_Scalars_and_Vectors_(Part_1)
      Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is gi...Vectors are geometrically represented by arrows, with the end marked by an arrowhead. The length of the vector is its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes with a reference direction, often an angle with the horizontal. When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original vector.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/04%3A_Two-Dimensional_Kinematics/4.10%3A_Vectors_Revisited
      Vectors are geometric representations of magnitude and direction and can be expressed as arrows in two or three dimensions.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/05%3A_Two-Dimensional_Kinematics/5.10%3A_Vectors_Revisited
      Vectors are geometric representations of magnitude and direction and can be expressed as arrows in two or three dimensions.

    Support Center

    How can we help?