Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/09%3A_Condensed_Matter_Physics/9.07%3A_Semiconductors_and_Doping
      The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping). Semiconductor n-type doping creates and fills new energy levels just below the conduction...The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping). Semiconductor n-type doping creates and fills new energy levels just below the conduction band. Semiconductor p-type doping creates new energy levels just above the valence band. The Hall effect can be used to determine charge, drift velocity, and charge carrier number density of a semiconductor.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/14%3A_Introduction_to_Semiconductor_Devices/14.03%3A_Semiconductors_and_Doping
      The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping). Semiconductor n-type doping creates and fills new energy levels just below the conduction...The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping). Semiconductor n-type doping creates and fills new energy levels just below the conduction band. Semiconductor p-type doping creates new energy levels just above the valence band. The Hall effect can be used to determine charge, drift velocity, and charge carrier number density of a semiconductor.

    Support Center

    How can we help?