Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Fowler)/03%3A_Mostly_1-D_Quantum_Mechanics/3.02%3A_General_Uncertainty_Principal
      If two physical variables correspond to commuting Hermitian operators, they can be diagonalized simultaneously -- that is, they have a common set of eigenstates. In these eigenstates both variables ha...If two physical variables correspond to commuting Hermitian operators, they can be diagonalized simultaneously -- that is, they have a common set of eigenstates. In these eigenstates both variables have precise values at the same time, there is no “Uncertainty Principle” requiring that as we know one of them more accurately, we increasingly lose track of the other. For example, the energy and momentum of a free particle can both be specified exactly. More interesting examples will appear in the

    Support Center

    How can we help?