Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 7 results
    • https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Astronomy_1e_(OpenStax)/03%3A_Orbits_and_Gravity/3.01%3A_The_Laws_of_Planetary_Motion
      Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of pl...Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of planets in their orbits as follows: (1) planetary orbits are ellipses with the Sun at one focus; (2) in equal intervals, a planet’s orbit sweeps out equal areas; and (3) the relationship between the orbital period (P) and the semimajor axis (a) of an orbit is given by \(P^2 = a^3\) (when a is in units
    • https://phys.libretexts.org/Courses/Grossmont_College/ASTR_110%3A_Astronomy_(Fitzgerald)/02%3A_History_of_Astronomy/2.04%3A_The_Laws_of_Planetary_Motion
      Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of pl...Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of planets in their orbits as follows: (1) planetary orbits are ellipses with the Sun at one focus; (2) in equal intervals, a planet’s orbit sweeps out equal areas; and (3) the relationship between the orbital period (P) and the semimajor axis (a) of an orbit is given by \(P^2 = a^3\)
    • https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/5%3A_Uniform_Circular_Motion_and_Gravitation/5.6%3A_Keplers_Laws
      Kepler’s first law is: The orbit of every planet is an ellipse with the Sun at one of the two foci.
    • https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Astronomy_2e_(OpenStax)/03%3A_Orbits_and_Gravity/3.02%3A_The_Laws_of_Planetary_Motion
      Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of pl...Tycho Brahe’s accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion. Kepler’s laws describe the behavior of planets in their orbits as follows: (1) planetary orbits are ellipses with the Sun at one focus; (2) in equal intervals, a planet’s orbit sweeps out equal areas; and (3) the relationship between the orbital period (P) and the semimajor axis (a) of an orbit is given by \(P^2 = a^3\) (when a is in units
    • https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_1030%3A_General_Physics_I/05%3A_Uniform_Circular_Motion_and_Gravitation/5.6%3A_Keplers_Laws
      Kepler’s first law is: The orbit of every planet is an ellipse with the Sun at one of the two foci.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/07%3A_Applications_of_Newton/7.16%3A_Keplers_Laws
      Kepler’s first law is: The orbit of every planet is an ellipse with the Sun at one of the two foci.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/6%3A_Applications_of_Newton/6.16%3A_Keplers_Laws
      Kepler’s first law is: The orbit of every planet is an ellipse with the Sun at one of the two foci.

    Support Center

    How can we help?