Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/08%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/8.03%3A_Reactance_Inductive_and_Capacitive
      \[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.02%3A_Reactance_Inductive_and_Capacitive
      \[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…

    Support Center

    How can we help?