Search
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/07%3A_Capacitance/7.08%3A_Application_-_RC_Circuits_with_ACIn this section, we study simple models of ac voltage sources connected to two circuit components: (1) a resistor and (2) a capacitor.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/08%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/8.03%3A_Reactance_Inductive_and_Capacitive\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…
- https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.02%3A_Reactance_Inductive_and_Capacitive\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of th...\[I = \dfrac{V}{X_L},\] where \(V\) is the rms voltage across the inductor and \(X_L\) is defined to be \[X_L = 2\pi fL,\] with \(f\) the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). \(X_L\) is called the inductive reactance, because the inductor reacts to impede the current. \(X_L\) has units of ohms (\(1 \, H = 1 \, \Omega \cdot s\), so that frequency times inductance has units of (cycles/s…
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/19%3A_Alternating-Current_(AC)_Circuits/19.03%3A_Simple_AC_CircuitsIn this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a capacitor, and (3) an inductor.
- https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/15%3A_Alternating-Current_Circuits/15.03%3A_Simple_AC_CircuitsIn this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a capacitor, and (3) an inductor.
- https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/10%3A_Inductance/10.09%3A_Application_-_RL_Circuits_with_ACIn this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a capacitor, and (3) an inductor.
- https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/10%3A_Alternating-Current_Circuits/10.03%3A_Simple_AC_CircuitsIn this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a capacitor, and (3) an inductor.