Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 3 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ

    Support Center

    How can we help?