Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 6 results
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/08%3A_Work_and_Energy/8.16%3A_Conservation_of_Energy
      A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particl...A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of mechanical energy.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/09%3A_Work_Power_and_Energy/9.12%3A_Conservation_of_Energy
      Figure \PageIndex2: Bar graphs representing the total energy (E), potential energy (U), and kinetic energy (K) of the particle in different positions. (a) The total energy of the system equals t...Figure \PageIndex2: Bar graphs representing the total energy (E), potential energy (U), and kinetic energy (K) of the particle in different positions. (a) The total energy of the system equals the potential energy and the kinetic energy is zero, which is found at the highest point the particle reaches. (b) The particle is midway between the highest and lowest point, so the kinetic energy plus potential energy bar graphs equal the total energy. (c) The particle is at the lowest point of th…
    • https://phys.libretexts.org/Workbench/PH_245_Textbook_V2/04%3A_Module_3_-_Conservation_Laws/4.01%3A_Objective_3.a./4.1.08%3A_Conservation_of_Energy
      A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particl...A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of mechanical energy.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/07%3A_Work_and_Energy/7.16%3A_Conservation_of_Energy
      A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particl...A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of mechanical energy.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/09%3A_Potential_Energy_and_Conservation_of_Energy/9.04%3A_Conservation_of_Energy
      A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particl...A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of mechanical energy.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/08%3A_Potential_Energy_and_Conservation_of_Energy/8.04%3A_Conservation_of_Energy
      A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particl...A conserved quantity is a physical property that stays constant regardless of the path taken. If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays constant. For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known, the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the conservation of mechanical energy.

    Support Center

    How can we help?