Loading [MathJax]/extensions/TeX/autobold.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/02%3A_Resonances/2.04%3A_Fermi's_Golden_Rule
      We can determine \(f(t)\) by first studying its Fourier transform, \[F(\omega) \;=\; \int_{-\infty}^\infty dt \; e^{i\omega t}\, f(t) \;=\; \int_0^\infty dt \; e^{i(\omega + i\varepsilon) t} \; \langl...We can determine \(f(t)\) by first studying its Fourier transform, \[F(\omega) \;=\; \int_{-\infty}^\infty dt \; e^{i\omega t}\, f(t) \;=\; \int_0^\infty dt \; e^{i(\omega + i\varepsilon) t} \; \langle\varphi|e^{-i\hat{H}t/\hbar}|\varphi\rangle.\] Now insert a resolution of the identity, \(\hat{I} = \sum_n |n\rangle\langle n|\), where \(\{|n\rangle\}\) denotes the exact eigenstates of \(\hat{H}\) (for free states, the sum goes to an integral in the usual way): \[\begin{align} \begin{aligned}F(\…

    Support Center

    How can we help?