Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 4 results
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/09%3A_Electromagnetic_Induction/9.09%3A_Mutual_Inductance
      Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying cur...Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying currents are close to one another, the magnetic flux through each circuit varies because of the changing current in the other circuit. Consequently, an emf is induced in each circuit by the changing current in the other. This type of emf is therefore called a mutually induced emf, and the phenomenon is
    • https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.10%3A_Appendix_-_Waveform_analysis
      Any linear system that is subject to a time-dependent forcing function can be expressed as a linear superposition of frequency-dependent solutions of the individual harmonic decomposition of the forci...Any linear system that is subject to a time-dependent forcing function can be expressed as a linear superposition of frequency-dependent solutions of the individual harmonic decomposition of the forcing function. Fourier analysis provides the mathematical procedure for the transformation between the periodic waveforms and the harmonic content
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/10%3A_Inductance/10.02%3A_Mutual_Inductance
      Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying cur...Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying currents are close to one another, the magnetic flux through each circuit varies because of the changing current in the other circuit. Consequently, an emf is induced in each circuit by the changing current in the other. This type of emf is therefore called a mutually induced emf, and the phenomenon is
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/14%3A_Inductance/14.02%3A_Mutual_Inductance
      Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying cur...Inductance is the property of a device that tells us how effectively it induces an emf in another device. It expresses the effectiveness of a given device. When two circuits carrying time-varying currents are close to one another, the magnetic flux through each circuit varies because of the changing current in the other circuit. Consequently, an emf is induced in each circuit by the changing current in the other. This type of emf is therefore called a mutually induced emf, and the phenomenon is

    Support Center

    How can we help?