Search
- https://phys.libretexts.org/Courses/Skyline/Survey_of_Physics/03%3A_Work_and_Energy/3.02%3A_Work-_The_Scientific_DefinitionWork is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magn...Work is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magnitude \(d\) of the displacement, times the cosine of the angle \(\theta\) between them. In symbols, \[W = Fd \space cos \space \theta. \] The SI unit for work and energy is the joule (J), where \(1 \space J = 1 \space N \cdot m = 1 \space kg \space m^2/s^2\). The work done by a force is zero if the
- https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/07%3A_Work_Energy_and_Energy_Resources/7.01%3A_Work-_The_Scientific_DefinitionWork is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magn...Work is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magnitude \(d\) of the displacement, times the cosine of the angle \(\theta\) between them. In symbols, \[W = Fd \space cos \space \theta. \] The SI unit for work and energy is the joule (J), where \(1 \space J = 1 \space N \cdot m = 1 \space kg \space m^2/s^2\). The work done by a force is zero if the
- https://phys.libretexts.org/Courses/Tuskegee_University/Algebra_Based_Physics_I/06%3A_Work_Energy_and_Energy_Resources/6.02%3A_Work-_The_Scientific_DefinitionWork is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magn...Work is the transfer of energy by a force acting on an object as it is displaced. The work \(W\) that a force \(F\) does on an object is the product of the magnitude \(F\) of the force, times the magnitude \(d\) of the displacement, times the cosine of the angle \(\theta\) between them. In symbols, \[W = Fd \space cos \space \theta. \] The SI unit for work and energy is the joule (J), where \(1 \space J = 1 \space N \cdot m = 1 \space kg \space m^2/s^2\). The work done by a force is zero if the