Search
- https://phys.libretexts.org/Courses/Skyline/Survey_of_Physics/09%3A_Magnetism/9.03%3A_Ferromagnets_and_ElectromagnetsAll magnetism is created by electric current. Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects. The atoms in ferromagnetic materials act like small magnets (due to...All magnetism is created by electric current. Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects. The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains. Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
- https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/22%3A_Magnetism/22.02%3A_Ferromagnets_and_ElectromagnetsAll magnetism is created by electric current. Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects. The atoms in ferromagnetic materials act like small magnets (due to...All magnetism is created by electric current. Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects. The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains. Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/07%3A_Magnetism/7.03%3A_Ferromagnets_and_ElectromagnetsCrucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and south magnetic poles. (This is far different from the case of posi...Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair.