Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 3 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
      The exponential function y=bx is increasing if b>1 and decreasing if 0<b<1. Its domain is (,) and its range is (0,). The logarithmic function y=logb(x) is the inverse of...The exponential function y=bx is increasing if b>1 and decreasing if 0<b<1. Its domain is (,) and its range is (0,). The logarithmic function y=logb(x) is the inverse of y=bx. Its domain is (0,) and its range is (,). The natural exponential function is y=ex and the natural logarithmic function is y=lnx=logex. Given an exponential function or logarithmic function in base a, we can make a change of base to convert this function to a
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.07%3A_Math_Review_of_Other_Topics/2.7.15%3A_Exponential_and_Logarithmic_Functions
      \(\begin{array} {l c} {\text{Suppose we want to evaluate} \log_{a}M} & {\log_{a}M} \\ {\text{Let} \:y =\log_{a}M. }&{y=\log_{a}M} \\ {\text{Rewrite the epression in exponential form. }}&{a^{y}=M } \\ ...Suppose we want to evaluatelogaMlogaMLety=logaM.y=logaMRewrite the epression in exponential form. ay=MTake the logbof each side.logbay=logbMUse the Power Property.ylogba=logbMSolve fory.y=logbMlogbaSubstiturey=logaM.logaM=logbMlogba
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_Functions
      The exponential function y=bx is increasing if b>1 and decreasing if 0<b<1. Its domain is (,) and its range is (0,). The logarithmic function y=logb(x) is the inverse of...The exponential function y=bx is increasing if b>1 and decreasing if 0<b<1. Its domain is (,) and its range is (0,). The logarithmic function y=logb(x) is the inverse of y=bx. Its domain is (0,) and its range is (,). The natural exponential function is y=ex and the natural logarithmic function is y=lnx=logex. Given an exponential function or logarithmic function in base a, we can make a change of base to convert this function to a

    Support Center

    How can we help?