Search
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_FunctionsThe exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of...The exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of \(y=b^x\). Its domain is \((0,∞)\) and its range is \((−∞,∞)\). The natural exponential function is \(y=e^x\) and the natural logarithmic function is \(y=\ln x=\log_e x\). Given an exponential function or logarithmic function in base \(a\), we can make a change of base to convert this function to a
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.07%3A_Math_Review_of_Other_Topics/2.7.15%3A_Exponential_and_Logarithmic_Functions\(\begin{array} {l c} {\text{Suppose we want to evaluate} \log_{a}M} & {\log_{a}M} \\ {\text{Let} \:y =\log_{a}M. }&{y=\log_{a}M} \\ {\text{Rewrite the epression in exponential form. }}&{a^{y}=M } \\ ...\(\begin{array} {l c} {\text{Suppose we want to evaluate} \log_{a}M} & {\log_{a}M} \\ {\text{Let} \:y =\log_{a}M. }&{y=\log_{a}M} \\ {\text{Rewrite the epression in exponential form. }}&{a^{y}=M } \\ {\text{Take the }\:\log_{b} \text{of each side.}}&{\log_{b}a^{y}=\log_{b}M}\\ {\text{Use the Power Property.}}&{y\log_{b}a=\log_{b}M} \\ {\text{Solve for}\:y. }&{y=\frac{\log_{b}M}{\log_{b}a}} \\ {\text{Substiture}\:y=\log_{a}M.}&{\log_{a}M=\frac{\log_{b}M}{\log_{b}a}} \end{array}\)
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.03%3A_Exponential_and_Logarithmic_FunctionsThe exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of...The exponential function \(y=b^x\) is increasing if \(b>1\) and decreasing if \(0<b<1\). Its domain is \((−∞,∞)\) and its range is \((0,∞)\). The logarithmic function \(y=\log_b(x)\) is the inverse of \(y=b^x\). Its domain is \((0,∞)\) and its range is \((−∞,∞)\). The natural exponential function is \(y=e^x\) and the natural logarithmic function is \(y=\ln x=\log_e x\). Given an exponential function or logarithmic function in base \(a\), we can make a change of base to convert this function to a