Figures IV.15 and IV.16 show, for an oblate and a prolate rotator respectively, the instantaneouss rotation vector \( \boldsymbol\omega\) precessing around the body-fixed symmetry axis at a rate \( \O...Figures IV.15 and IV.16 show, for an oblate and a prolate rotator respectively, the instantaneouss rotation vector \( \boldsymbol\omega\) precessing around the body-fixed symmetry axis at a rate \( \Omega\) in the body cone of semi vertical angle \( \alpha\); the symmetry axis precessing about the space-fixed angular momentum vector \( \bf{L}\) at a rate \( \dot{\phi}\) in a cone of semi vertical angle \( \theta\) (which is less than \( \alpha\) for an oblate rotator, and greater than \( \alpha…
From the rate of regression of the line of nodes, we can deduce the difference, \(C − A\) between the principal moments of inertia, though we cannot deduce either moment separately. (If we could deter...From the rate of regression of the line of nodes, we can deduce the difference, \(C − A\) between the principal moments of inertia, though we cannot deduce either moment separately. (If we could determine the moment of inertia from the rate of regression of the nodes – which we cannot – how well can we determine the density distribution inside Earth?
If it is possible to find a set of axes with respect to which the product moments F, G and H are all zero, these axes are called the principal axes of the body, and the moments of inertia with respect...If it is possible to find a set of axes with respect to which the product moments F, G and H are all zero, these axes are called the principal axes of the body, and the moments of inertia with respect to these axes are the principal moments of inertia.