Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 6 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
      Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
      Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.07%3A_Math_Review_of_Other_Topics/2.7.14%3A_Trigonometric_Functions
      Let \(P=(x,y)\) be a point on the unit circle and let \(θ\) be the corresponding angle . Since the angle \(θ\) and \(θ+2π\) correspond to the same point \(P\), the values of the trigonometric function...Let \(P=(x,y)\) be a point on the unit circle and let \(θ\) be the corresponding angle . Since the angle \(θ\) and \(θ+2π\) correspond to the same point \(P\), the values of the trigonometric functions at \(θ\) and at \(θ+2π\) are the same.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)

    Support Center

    How can we help?