Search
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.01%3A_Review_of_Trigonometry\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_FunctionsTrigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_FunctionsTrigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.07%3A_Math_Review_of_Other_Topics/2.7.14%3A_Trigonometric_FunctionsLet \(P=(x,y)\) be a point on the unit circle and let \(θ\) be the corresponding angle . Since the angle \(θ\) and \(θ+2π\) correspond to the same point \(P\), the values of the trigonometric function...Let \(P=(x,y)\) be a point on the unit circle and let \(θ\) be the corresponding angle . Since the angle \(θ\) and \(θ+2π\) correspond to the same point \(P\), the values of the trigonometric functions at \(θ\) and at \(θ+2π\) are the same.
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.01%3A_Review_of_Trigonometry\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...\(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \tan (α+β) &= \frac{\tan α+\tan β}{1−\tan α \tan β} \\ \tan (α−β) &= \frac{\tan α− \tan β}{1+\tan α \tan β} \end{align}\)