Search
- https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Astronomy_2e_(OpenStax)/29%3A_The_Big_Bang/29.05%3A_The_Cosmic_Microwave_BackgroundWhen the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this ti...When the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this time during the hot, early universe. Measurements with the COBE satellite show that the CMB acts like a blackbody with a temperature of 2.73 K. Tiny fluctuations in the CMB show us the seeds of large-scale structures in the universe.
- https://phys.libretexts.org/Courses/Grossmont_College/ASTR_110%3A_Astronomy_(Fitzgerald)/14%3A_The_Big_Bang/14.04%3A_The_Cosmic_Microwave_BackgroundWhen the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this ti...When the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this time during the hot, early universe. Measurements with the COBE satellite show that the CMB acts like a blackbody with a temperature of 2.73 K. Tiny fluctuations in the CMB show us the seeds of large-scale structures in the universe.
- https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Astronomy_1e_(OpenStax)/29%3A_The_Big_Bang/29.04%3A_The_Cosmic_Microwave_BackgroundWhen the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this ti...When the universe became cool enough to form neutral hydrogen atoms, the universe became transparent to radiation. Scientists have detected the cosmic microwave background (CMB) radiation from this time during the hot, early universe. Measurements with the COBE satellite show that the CMB acts like a blackbody with a temperature of 2.73 K. Tiny fluctuations in the CMB show us the seeds of large-scale structures in the universe.