Search
- https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/06%3A_Quantum_Mechanics/6.02%3A_Wave_functionsIn quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of findi...In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle around a specific location in space. Wave functions must first be normalized before using them to make predictions. The expectation value is the average value of a quantity that requires a wave function and an integration.
- https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/04%3A_Quantum_Mechanics/4.02%3A_Wave_functionsIn quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of findi...In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle around a specific location in space. Wave functions must first be normalized before using them to make predictions. The expectation value is the average value of a quantity that requires a wave function and an integration.
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/03%3A_The_Schrodinger_Equation/3.01%3A_The_State_of_a_Quantum_SystemIf we take the complex function A \exp ( i( k x−ω t+ϕ)), however, the probability, defined as the absolute value squared, is a constant (| A|^2) independent of x and t, which is very s...If we take the complex function A \exp ( i( k x−ω t+ϕ)), however, the probability, defined as the absolute value squared, is a constant (| A|^2) independent of x and t, which is very sensible for a beam of particles. − e^{ − i E t ∕ ℏ} \dfrac{ ℏ^ 2}{ 2 m} \dfrac{ d^ 2}{ d x^ 2} ϕ ( x ) + e ^{− i E t ∕ ℏ} V ( x ) ϕ ( x ) = E e^{ − i E t ∕ ℏ} ϕ ( x ) . \label{3.14}
- https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/07%3A_Quantum_Mechanics/7.02%3A_WavefunctionsIn quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of findi...In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle around a specific location in space. Wave functions must first be normalized before using them to make predictions. The expectation value is the average value of a quantity that requires a wave function and an integration.
- https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Introduction_to_Applied_Nuclear_Physics_(Cappellaro)/02%3A_Introduction_to_Quantum_Mechanics/2.03%3A_Measurement_and_ProbabilityThe third postulate states also that after the measurement the system is left in the eigenstate corresponding to the eigenvalue found (more generally, if more than one eigenstate is associated to the ...The third postulate states also that after the measurement the system is left in the eigenstate corresponding to the eigenvalue found (more generally, if more than one eigenstate is associated to the same eigenvalue, the state is projected on the subspace of the eigenvalue a_{n}, that is, the subspace spanned by all the eigenstates associated with a_{n}).