If the loop consists of straight sides – e.g., a rectangular loop – then the force applied to the loop is the sum of the forces applied to each side separately, as determined by Equation \ref{m0017_em...If the loop consists of straight sides – e.g., a rectangular loop – then the force applied to the loop is the sum of the forces applied to each side separately, as determined by Equation \ref{m0017_emforce}. However, we wish to consider loops of arbitrary shape. In terms of the theory developed in this section, a current \(I_1=+1.2\) A flows from the positive terminal of the battery to the load on one conductor, and a current \(I_2=-1.2\) A returns to the battery on the other conductor.