Now we are ready to address the question “What is \(\Delta\widetilde{\bf E}({\bf r})\) due to \(\Delta\widetilde{\bf J}({\bf r})\)?” Without doing any math, we know quite a bit about \(\Delta\widetild...Now we are ready to address the question “What is \(\Delta\widetilde{\bf E}({\bf r})\) due to \(\Delta\widetilde{\bf J}({\bf r})\)?” Without doing any math, we know quite a bit about \(\Delta\widetilde{\bf E}({\bf r})\). If we are sufficiently far from the origin, and the loss due to the medium is negligible, then we expect the phase of \(\Delta\widetilde{\bf E}({\bf r})\) to change approximately at rate \(\beta\) where \(\beta\) is the phase propagation constant \(2\pi/\lambda\).
Now we are ready to address the question “What is \(\Delta\widetilde{\bf E}({\bf r})\) due to \(\Delta\widetilde{\bf J}({\bf r})\)?” Without doing any math, we know quite a bit about \(\Delta\widetild...Now we are ready to address the question “What is \(\Delta\widetilde{\bf E}({\bf r})\) due to \(\Delta\widetilde{\bf J}({\bf r})\)?” Without doing any math, we know quite a bit about \(\Delta\widetilde{\bf E}({\bf r})\). If we are sufficiently far from the origin, and the loss due to the medium is negligible, then we expect the phase of \(\Delta\widetilde{\bf E}({\bf r})\) to change approximately at rate \(\beta\) where \(\beta\) is the phase propagation constant \(2\pi/\lambda\).