Multiplying numerator and denominator by e+jβl we obtain Zin(l)=Z0e+jβl−e−jβle+jβl+e−jβl Now we invoke the following ...Multiplying numerator and denominator by e+jβl we obtain Zin(l)=Z0e+jβl−e−jβle+jβl+e−jβl Now we invoke the following trigonometric identities: Z_{i n}(l) &=Z_{0} \frac{1+\Gamma e^{-j 2 \beta l}}{1-\Gamma e^{-j 2 \beta l}} \\
Multiplying numerator and denominator by e+jβl we obtain Zin(l)=Z0e+jβl−e−jβle+jβl+e−jβl Now we invoke the following ...Multiplying numerator and denominator by e+jβl we obtain Zin(l)=Z0e+jβl−e−jβle+jβl+e−jβl Now we invoke the following trigonometric identities: Z_{i n}(l) &=Z_{0} \frac{1+\Gamma e^{-j 2 \beta l}}{1-\Gamma e^{-j 2 \beta l}} \\