We may express the associated potential and current as follows: v+(z,t)=|V+0|cos(ωt−βz+ϕ) \[i^+(z,t) = \frac{\left|V_0^+\right|}{Z_0}\cos\lef...We may express the associated potential and current as follows: v+(z,t)=|V+0|cos(ωt−βz+ϕ)i+(z,t)=|V+0|Z0cos(ωt−βz+ϕ) And so the associated time-average power is \[\begin{equation}\begin{split} P_{av}^+(z) &= \frac{1}{T}\int_0^T{ v^+(z,t)~i^+(z,t)~dt } \\ &= \frac{\left|V_0^+\right|^2}{Z_0} \cdot \frac{1}{T}\int_0^T{ \cos^2\left(\omega t -\beta z +\phi\right) ~dt } \en…